ComPotts

Optimal alignment of coevolutionary models for protein sequences

Hugo Talibart, François Coste

JOBIM 2020

Ínnía-

Motivation: protein sequence annotation problem

$\mathsf{Sequencing technologies} \to \textbf{increasing number of protein sequences}$

Number of entries in UniProtKB/TrEMBL over time

Problem

Annotate all these sequences?

\rightarrow in silico annotation

Annotate sequences with alignment-based homology search

Align a sequence to a sequence

Align a **sequence** to a **model** (pHMMs: profile Hidden Markov Models)

What about long-distance dependencies?

correlated positions

Goal: Homology search with distant dependencies

Homology search with distant dependencies: first attempts

Model proteins with Markov Random Fields (MRFs)

SMURF¹

- pHMMs + dependencies between β -strands (\Rightarrow limited to all- β folds)
- aligns sequence to model
- outperforms HMMER in propeller fold prediction
- MRFalign²
 - MRFs allow dependencies between all positions
 - aligns model to model
 - complex workflow for building MRFs and aligning them
 - outperforms HMMER and HHsearch in remote homology detection on SCOP20, SCOP40 and SCOP80 benchmarks at the superfamily level

ightarrow shows the potential of using long-distance dependencies

- ¹ Menke, Berger, and Cowen, "Markov random fields reveal an N-terminal double beta-propeller motif as part of a bacterial hybrid two-component sensor system", 2010.
- 2 Ma et al., "MRFalign: protein homology detection through alignment of Markov random fields", 2014.

Our proposition: exploit the Potts model

- Potts model: another type of Markov Random Field
- Based on maximum-entropy principle
- First applied to proteins within Direct Coupling Analysis³
- Successfully applied to contact prediction
 - $\rightarrow\,$ dramatic improvement in CASP predictions 4

Can Potts model improve homology search? [5][6]

³ Weigt et al., "Identification of direct residue contacts in protein–protein interaction by message passing", 2009.

⁴ Monastyrskyy et al., "New encouraging developments in contact prediction: Assessment of the CASP 11 results", 2016.

⁵ H. Talibart and F. Coste, "Using residues coevolution to search for protein homologs through alignment of Potts models". CECAM, 2019.

⁶ A. P. Muntoni et al., "Using Direct Coupling Analysis for the protein sequences alignment problem". CECAM, 2019.

Represent sets of protein sequences with Potts models

Markov Random Field representing MSA of homologous proteins

ICCB: A FOBID CHAIN SEQUENCE ap Q44P22 ATUSIDICDI tr AAUCTWIES AAUCOTWIES_9BACH tr ATTF58 ATTF58 ATF60VANPO tr GOUDES GOMDB9_NAUDC tr GOUDES GOMDB9_NAUDC tr GOUDES GOUDES_TOBC tr SEESDES SEESDES_TOBC tr STROBE SEESDES_TOBC	MAE LIKE YOUNY WIT IS SO BOAT MIKELT IN LEPHONSKI DISLEMA VLAVIYTT . WYT SIFFYNT COSERAN YMALLAK LIKE YN DY NA DDLEMAK YCHERAU . SAN HYTFYN YN TE SOBAT MIKELT NAL EPHONSKI DISLEMA Y THYNY MAE MYN DY YN TE SOBAT MIKELT NAL HEPHONSKI DISLEMAT YN YN TH MAE MYN DY YN TE SOBAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN EFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED PONSKI DISLEMAT YN YN TH MOENYN FEFYNYN DISLEMAT MIKELT YLAED FYN TH YN YN TH YN TH YN TH YN YN TH YN T
tr 378785 378785 KAZNA tr 178785 378785 KAZNA tr V1(802 V1(802_0CAPD tr H2AUI5 H2AUI5_KAZAF tr CR M03 CR M03 EMBCY	. NSNEYOFVYNYTSSCSAAISKYLTANEPETREDUSLEKSTVOVID NSAKHYKPOYTAISSCSAAISKYLTAL POYKNYEISLEKSTVOVID NSAKHYKPOYTAISSCSAAISKYLTAL POYKNYEISLEKSTVOVID NYYCYHPYYYYSSCSDAIHRSLSKLOPEYTDIDISLENSYVEVYT

Derives from the maximum-entropy principle

$$\sum_{\substack{x \in \Sigma^L: \ x_i = a}} \mathbb{P}(x_1, \cdots, x_L) = f_i(a)$$
$$\sum_{x \in \Sigma^L: \ x_i = a, x_j = b} \mathbb{P}(x_1, \cdots, x_L) = f_{ij}(a, b)$$

Probability of sequence

$$\mathbb{P}(x|w,v) = \frac{1}{Z} \exp\left(\sum_{i=1}^{L-1} \sum_{j=i+1}^{L} w_{ij}(x_i, x_j) + \sum_{i=1}^{L} v_i(x_i)\right)$$
Normalization Fields

Represent sets of protein sequences with Potts models

Markov Random Field representing MSA of homologous proteins

- Field $v_i \sim$ positional conservation
- Coupling w_{ij} ~ covariation
- Derives from the maximum-entropy principle
 - reproduces MSA empirical frequencies:

$$\sum_{\substack{x \in \Sigma^L: \ x_i = a}} \mathbb{P}(x_1, \cdots, x_L) = f_i(a)$$
$$\sum_{\substack{L^L: \ x_i = a, x_j = b}} \mathbb{P}(x_1, \cdots, x_L) = f_{ij}(a, b)$$

Probability of sequence

$$\mathbb{P}(x|w,v) = \frac{1}{Z} \exp\left(\sum_{i=1}^{L-1} \sum_{j=i+1}^{L} w_{ij}(x_i, x_j) + \sum_{i=1}^{L} v_i(x_i)\right)$$
Normalization
constant
Fields

 $x \in C$

Choice of prior on positional parameters: center v at v^* : $\frac{\exp(v_i^*(a))}{\sum_{h=1}^{q} \exp(v_i^*(b))}$

- ightarrow yields correct model if no columns are coupled, i.e. $\mathbb{P}(x|v,w) = \prod_{i=1}^{L} \mathbb{P}(x_i)$
- ightarrow Intuition: only necessary couplings should be added

⁵ Steinegger et al., "HH-suite3 for fast remote homology detection and deep protein annotation", 2019.

⁶ Vorberg, "Bayesian Statistical Approach for Protein Residue-Residue Contact Prediction", 2017.

Compare proteins by aligning Potts models

ComPotts: optimal Potts model alignment

• Formulation of Potts model alignment as an

Integer Linear Programming (ILP) problem

Based on Wohlers, Andonov, Malod-Dognin and Klau's solver⁷
 ⁷ Wohlers, Andonov, and Klau, "DALIX: optimal DALI protein structure alignment", 2012.

Preliminary experiments to assess alignment quality

(homology search = align + score)

• 59 sequence pairs

- extracted from reference structural multiple sequence alignments from BAliBASE⁸ and sisyphus⁹
- low sequence identity (6 12%)
- length(training MSAs) < 200
- Build Potts models sequence → HHblits → MSA → CCMpredPy → Potts model
- Align with ComPotts (stop when $\frac{2(UB-LB)}{s(A,A)+s(B,B)} < 0.005$)

 $\begin{array}{cccc} \mathsf{sequence} \ 1 & \longrightarrow & \mathsf{Potts} \ \mathsf{model} \\ \mathsf{sequence} \ 2 & \longrightarrow & \mathsf{Potts} \ \mathsf{model} \\ \end{array} \\ \end{array} \xrightarrow{} \begin{array}{c} \mathsf{ComPotts} \\ & \longrightarrow \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathsf{comPotts} \\ \mathsf{comPotts} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathsf{descent{alignment}} \\ \mathsf{descent{alignment}} \\ \mathsf{descent{alignment}} \\ \mathsf{descent{alignment}} \\ \end{array} \\ \begin{array}{c} \mathsf{descent{alignment}} \\ \mathsf$

• Compare our alignment with reference alignment

⁸ Thompson, Plewniak, and Poch, "BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs.", 1999.

⁹ Andreeva et al., "SISYPHUS—structural alignments for proteins with non-trivial relationships", 2007.

Compare with main (alignment-based) homology search rivals

- BLASTp v2.9.0 $+^{10}$ (without E-value cutoff)
 - aligns sequences
- HHalign v3.03¹¹
 - aligns HMMs inferred from MSAs outputted by HHblits
- MRFalign v0.90¹²
 - aligns MRFs built from sequences
- + Matt v1.0013
 - aligns corresponding PDB structures
- ¹⁰ Altschul et al., "Basic local alignment search tool", 1990.
- ¹¹ Steinegger et al., "HH-suite3 for fast remote homology detection and deep protein annotation", 2019.

 $^{^{12}}$ Ma et al., "MRFalign: protein homology detection through alignment of Markov random fields", 2014.

¹³ Menke, Berger, and Cowen, "Matt: local flexibility aids protein multiple structure alignment", 2008.

A better recall than our competitors...

- Better than HHalign in most cases (52/59)
- Better than MRFalign in 39 cases
- On average better than Matt !

... while still having a slightly better precision

- Better than HHalign in 46 out of 59
- Better than MRFalign in 30 out of 59

• On a Debian 9 virtual machine with 4 vCPUs, 8GB RAM:

	time (s)	model dimension	alignment algorithm
ComPotts	3 < t < 58	2D	exact
HHalign	0.7 < t < 3.3	1D	exact
MRFalign	<i>t</i> < 0.2	2D	heuristics

 \rightarrow As expected: higher computation time for an exact solution but **tractable** despite NP-completeness

Conclusion

ComPotts: compares protein sequences by aligning Potts models

- Based on an ILP formulation of the alignment problem
- Can yield exact solution in tractable time
- Encouraging preliminary results on quality of its alignments
- Suggest that **direct coupling information** can **improve** protein sequence **alignment**...
 - ightarrow ongoing work: validation at a larger scale
- ...and might improve sequence-based homology search
 - ightarrow discriminatory power of similarity score between two Potts models?

Thank you !

P.S. I'm looking for a postdoc as of 2021

Altschul, S. F. et al. "Basic local alignment search tool". Journal of molecular biology 215.3 (1990), pp. 403–410.

- Eddy, S. R. "Profile hidden Markov models." *Bioinformatics (Oxford, England)* 14.9 (1998), pp. 755–763.
- Steinegger, M. et al. "HH-suite3 for fast remote homology detection and deep protein annotation". *BMC bioinformatics* 20.1 (2019), pp. 1–15.
- Menke, M., B. Berger, and L. Cowen. "Markov random fields reveal an N-terminal double beta-propeller motif as part of a bacterial hybrid two-component sensor system". *Proceedings of the National Academy* of Sciences 107.9 (2010), pp. 4069–4074.
- Ma, J. et al. "MRFalign: protein homology detection through alignment of Markov random fields". *PLoS computational biology* 10.3 (2014), e1003500.

Weigt, M. et al. "Identification of direct residue contacts in protein-protein interaction by message passing". *Proceedings of the National Academy of Sciences* 106.1 (2009), pp. 67–72.
Monastyrskyy, B. et al. "New encouraging developments in contact prediction: Assessment of the CASP 11 results". *Proteins: Structure, Function, and Bioinformatics* 84 (2016), pp. 131–144.

Vorberg, S. "Bayesian Statistical Approach for Protein Residue-Residue Contact Prediction". PhD thesis. Ludwig-Maximilians-Universität, 2017. Wohlers, I., R. Andonov, and G. W. Klau. "DALIX: optimal DALI protein structure alignment". IEEE/ACM Transactions on Computational Biology and Bioinformatics 10.1 (2012), pp. 26–36. Thompson, J. D., F. Plewniak, and O. Poch. "BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs." Bioinformatics (Oxford, England) 15.1 (1999), pp. 87–88. Andreeva, A. et al. "SISYPHUS-structural alignments for proteins with non-trivial relationships". Nucleic acids research 35.suppl_1 (2007), Menke, M., B. Berger, and L. Cowen. "Matt: local flexibility aids protein multiple structure alignment". *PLoS computational biology* 4.1 (2008).

Hugo Talibart, François Coste Com

A

В

Choice for $s_v(v_i, v_k)$ et $s_w(w_{ij}, w_{kl})$: scalar product

$$\langle \mathbf{v}_{i}^{A}, \mathbf{v}_{k}^{B} \rangle = \left\| \mathbf{v}_{i}^{A} \right\| \left\| \mathbf{v}_{k}^{B} \right\| \cos \theta$$

importance of position *i*

similarity measure importance of position *k*

 $\mathbf{v}_i^{\mathbf{A}} \bigg|_{\substack{\theta \quad \forall B \\ \forall v_i^{\mathbf{B}}}}$